Yksinkertainen Liikkuvan Keskiarvon Ennuste Menetelmällä


Yksinkertainen liikkuva keskiarvo - SMA. BREAKING DOWN Yksinkertainen liikkuva keskiarvo - SMA. A yksinkertainen liukuva keskiarvo on muokattavissa, koska se voidaan laskea eri määräaikaa yksinkertaisesti lisäämällä sulkemisen hinta vakuuden useita aikavälejä ja sitten jakamalla tämä kokonaissumma ajanjaksojen lukumäärän mukaan, mikä antaa arvopaperin keskimääräisen hinnan ajanjaksolla Yksinkertainen liukuva keskiarvo tasoittaa volatiliteettia ja helpottaa tietoturvan hintatrendin tarkastelua Jos yksinkertainen liukuva keskiarvo osoittaa , tämä tarkoittaa sitä, että tietoturvan hinta nousee Jos se osoittaa alaspäin, se merkitsee sitä, että tietoturvan hinta laskee. Mitä kauemmin liikkuvan keskiarvon aikataulu on, sitä helpompi on yksinkertainen liukuva keskiarvo. Lyhyen aikavälin liukuva keskiarvo on epävakaampi, mutta sen lukeminen on lähempänä lähdedataa. Analyyttinen merkitys. Muuttivat keskiarvot ovat tärkeä analyysityökalu, jota käytetään tunnistamaan nykyiset hintakehitykset ja mahdolliset muutokset n Yksinkertaisin tapa käyttää yksinkertaista liikkumavälinettä analyysissä on se, että se tunnistaa nopeasti, onko suojaus nousussa tai laskussa. Toinen suosittu, vaikkakin hieman monimutkaisempi analyyttinen työkalu on vertailla pari yksinkertaista liikkuvaa keskiarvoa kutakin eri pintaa vastaan aikakehykset Jos lyhyen aikavälin yksinkertainen liukuva keskiarvo on pidemmän aikavälin keskiarvon yläpuolella, odotetaan nousevan. Toisaalta lyhytaikaisen keskiarvon yläpuolella oleva pitkän aikavälin keskiarvo merkitsee trendin alaspäin suuntautuvaa kehitystä. Popular Trading Patterns. Kaksi suosittua kaupankäyntimallia, jotka käyttävät yksinkertaisia ​​liikkuvaa keskiarvoa ovat kuolemanranta ja kultainen risti Kuolemanranta syntyy, kun 50 päivän yksinkertainen liukuva keskiarvo ylittää 200 päivän liukuva keskiarvon. Tätä pidetään laskevana signaalina, Kultainen risti syntyy, kun lyhyen aikavälin liukuva keskiarvo rikkoo pitkän aikavälin liukuva keskiarvoa. Korkeat kaupankäyntimäärät vahvistavat, mikä voi merkitä sitä, että lisäetuja on varastossa. Keskimääräinen liikevoitto ja eksponentit al-tasoitusmalleja. Ensimäisen askeleen ylittäessä malleja, satunnaiset kävelymallit ja lineaariset trendimallit, ei-seulomalliset mallit ja trendit voidaan ekstrapoloida käyttäen liikkuvan keskiarvon tai tasoitusmallin. Perusoletus oletuksena keskiarvon ja tasoitusmallien takana on, että aika sarja on paikallisesti paikallaan hitaasti vaihtelevalla keskiarvolla. Siksi siirrytään liikkuvasta paikallisesta keskiarvosta arvioimaan keskiarvon nykyistä arvoa ja käyttämään sitä lähitulevaisuuden ennusteena. Tätä voidaan pitää kompromissina keskimääräisen mallin ja satunnaisen - walk-ilman drift - mallia Samaa strategiaa voidaan käyttää paikallisen trendin arvioimiseen ja ekstrapolointiin Liukuvaa keskiarvoa kutsutaan usein alkuperäisen sarjan tasoitetuksi versioksi, koska lyhyen aikavälin keskiarvotuksen vaikutus tasoittaa kuoppia alkuperäisessä sarja Säätämällä liikkuvan keskiarvon leveyden tasoittamisastetta, voimme toivoa jonkinlaisen optimaalisen tasapainon keskimääräisen ja satunnaisen kävelymallin suorituskyvyn välillä. implest - tyyppinen keskiarvointimalli on yksinkertainen yhtäpainotettu liukuva keskiarvo. Y: n arvolla t1, joka tehdään ajanhetkellä t, on sama kuin viimeisimpien m-havaintojen yksinkertainen keskiarvo. Tässä ja muualla käytän Y-hahmoa ennusteessa aikasarjasta Y mahdollisimman varhaisessa päivämääränä tietyn mallin mukaan. Tämä keskiarvo keskittyy ajanjaksoon t-m 1 2, mikä tarkoittaa sitä, että arvio Paikallinen keskiarvo pyrkii jäljessä paikallisen keskiarvon todellisesta arvosta noin m 1 2 jaksolla. Näin ollen sanomme, että datan keski-ikä yksinkertaisella liiketaloudellisella keskiarvolla on m 1 2 suhteessa siihen kauteen, jolle ennuste lasketaan tämä on aika, jolla ennusteet katoavat jäljessä datan kääntöpisteistä. Esimerkiksi, jos keskiarvo lasketaan viimeksi kuluneesta viidestä arvosta, ennusteet ovat noin 3 jaksoa, jotka myöhästyvät vastakkain kääntöpisteissä. Huomaa, että jos m 1, yksinkertainen liukuva keskimääräinen SMA-malli vastaa satunnaisen kävelymallin ilman kasvua Jos m on hyvin suuri, joka on verrattavissa arviointikauden pituuteen, SMA-malli vastaa keskiarvoista mallia. Kuten ennustamomallin parametreilla, se on tavanomaista säätää ki-arvoa n jotta saadaan parhaiten sopivat tiedot, eli pienimmät ennustevirheet keskimäärin. On esimerkki sarjasta, joka näyttää satunnaisvaihteluita hitaasti vaihtelevan keskiarvon ympärillä. Ensinnäkin yritetään sovittaa satunnaisen kävelyn kanssa Malli, joka vastaa yksinkertaista liikkumatonta keskiarvoa yhdestä termistä. Satunnaiskäytävä malli reagoi hyvin nopeasti sarjan muutoksiin, mutta näin tehdessään se poimii paljon datan kohinaa satunnaisvaihteluista sekä signaalista paikallinen Keskiarvo Jos me yrittäisimme yksinkertaisesti liikkua keskimäärin 5 ehdokasta, saamme tasaisemman näköisiä ennusteita. 5-aikavälinen yksinkertainen liukuva keskiarvo tuottaa huomattavasti pienempiä virheitä kuin satunnaiskäytävä malli tässä tapauksessa. Tämän tietojen keskimääräinen ikä ennuste on 3 5 1 2, joten se on yleensä jäljessä käännekohdista noin kolmella jaksolla Esimerkiksi laskusuhdanne näyttää esiintyneen kaudella 21, mutta ennusteet eivät kääntyneet vasta useisiin jaksoihin myöhemmin. Huomaa, pitkän aikavälin ennusteet SMA-modista El on horisontaalinen suora, kuten satunnaiskäytävässä. Siten SMA-mallissa oletetaan, että datassa ei ole trendiä. Vaikka satunnaiskäytävämallin ennusteet ovat yksinkertaisesti yhtä kuin viimeinen havaittu arvo, ennusteet SMA-malli on yhtä kuin viimeaikaisten arvojen painotettu keskiarvo. Statgraphicsin laskemat luottamusrajat yksinkertaisen liukuvan keskiarvon pitkän aikavälin ennusteille eivät laajene ennustehorisontin kasvaessa. Tämä ei tietenkään ole oikea. Valitettavasti ei ole mitään taustalla olevaa tilastoteoria, joka kertoo, kuinka luottamusväliä pitäisi laajentaa tähän malliin. Ei kuitenkaan ole liian vaikeaa laskea empiirisiä estimaatteja luottamusrajoista pitempään horisonttiennusteisiin. Esimerkiksi voit luoda laskentataulukon, jossa SMA-malli käytetään ennustamaan 2 askeleen eteenpäin, 3 askeleen eteenpäin, jne. historiallisen datanäytteen sisällä. Tämän jälkeen voit laskea virheiden näytteen keskihajotukset kullakin ennusteella h orizon, ja sitten rakentaa luottamusväliä pitempiaikaisille ennusteille lisäämällä ja vähentämällä asianmukaisten standardipoikkeaman kerrannaisvaikutuksia. Jos yritämme 9-portaista yksinkertaista liikkuvaa keskiarvoa, saamme vielä tasaisempia ennusteita ja enemmän jäljellä olevaa vaikutusta. Keskimääräinen ikä on nyt 5 jaksoa 9 1 2 Jos otamme 19-vuotisen liikkumavälin keskiarvon, keski-ikä kasvaa arvoon 10. Huomaa, että ennusteet ovat nyt jäljessä käännekohdista noin kymmenen jaksolla. Mikä taso on parasta tässä sarjassa Tässä on taulukko, joka vertaa virhetilastojaan, mukaan lukien myös 3-aikavälin keskiarvon. Mallin C, 5-aikavälinen liukuva keskiarvo, tuottaa RMSE: n pienimmän arvon pienellä marginaalilla kolmen ja 9 kuukauden keskiarvoissa. niiden muut tilastot ovat lähes samankaltaisia. Joten mallien, joilla on hyvin samankaltaiset virhestatukset, voimme valita, haluammeko ennustaa hieman reagointikykyä tai hieman tasaisempaa. Palaa sivun yläreunaan. Brown s Yksinkertainen eksponentiaalinen tasoitus eksponentiaalisesti painotettu liikkuvaa keskiarvoa. Edellä kuvatulla yksinkertaisella liikkuva keskiarvoominaisuudella on epätoivottava ominaisuus, että se käsittelee viimeiset k-havainnot yhtä lailla ja jättää täysin huomiotta kaikki edeltävät havainnot Intuitiivisesti, aiemmat tiedot on diskontattava asteittain - esimerkiksi viimeisin havainto saavat hieman enemmän painoa kuin 2. viimeisin, ja 2. viimeisin pitäisi saada hieman enemmän painoa kuin kolmas viimeisin ja niin edelleen Yksinkertainen eksponentti tasoitus SES malli tekee tämän. Let merkitsee tasaus vakiona luku välillä 0 ja 1 Yksi tapa kirjoittaa mallia on määrittää sarja L, joka edustaa nykyistä tasoa eli sarjan keskimääräistä arvoa, joka on arvioitu datasta tähän asti L: n arvo ajankohtana t lasketaan rekursiivisesti edellisestä omasta edellisestä arvostaan. Siten nykyinen tasoitettu arvo on interpolointi edellisen tasoitetun arvon ja nykyisen havainnon välillä, missä se ohjaa interpoloidun arvon läheisyyttä eniten Sentin ennustaminen Seuraavan jakson ennuste on yksinkertaisesti nykyinen tasoitettu arvo. Vastaavasti voimme ilmaista seuraavan ennusteen suoraan edellisten ennusteiden ja aikaisempien havaintojen perusteella jollakin seuraavista vastaavista versioista Ensimmäisessä versiossa ennuste on interpolointi Edellisen ennusteen ja aiemman havainnon välillä. Toisessa versiossa seuraava ennuste saadaan säätämällä edellistä ennustusta edellisen virheen suuntaan murto-osalla. On virheen aikaan t Kolmannessa versiossa ennuste on eksponentiaalisesti painotettu eli diskontattu liikkuva keskiarvo diskonttokertoimella 1. Ennakoivan kaavan interpolointiversio on yksinkertaisin käyttää, jos toteutat mallia laskentataulukkoon, johon se sopii yhteen soluun ja sisältää soluviitteitä, jotka osoittavat edellistä ennustetta, havainto ja solu, jossa arvo on tallennettu. Huomaa, että jos 1, SES-malli vastaa satunnainen kävelymalli wit jos 0, SES-malli vastaa keskiarvoa, olettaen, että ensimmäinen tasoitettu arvo on asetettu yhtä kuin keskiarvo Palaa sivun yläosaan. Yksinkertaisen eksponentiaalisen tasauksen ennusteessa olevien tietojen keskimääräinen ikä on 1 suhteellinen ennuste lasketaan Tämä ei ole tarkoitus olla ilmeinen, mutta se voidaan helposti osoittaa arvioimalla ääretön sarja Näin ollen yksinkertainen liukuva keskimääräinen ennuste pyrkii kääntämään käänteispisteitä noin yhdellä jaksolla Esimerkiksi 0 5 viive on 2 jaksoa, kun 0 2 viive on 5 jaksoa, kun 0 1 viive on 10 jaksoa jne. Tietyllä keskimääräisellä iällä eli viivästymisellä, yksinkertainen eksponentiaalinen tasoitus SES ennuste on jonkin verran parempi kuin yksinkertainen liikkuva keskimääräinen SMA-ennuste, koska se asettaa suhteellisen enemmän painoarvoa viimeisimpiin havaintoihin - se on hieman reagoivampi viime aikoina tapahtuneisiin muutoksiin. Esimerkiksi yhdeksällä ehdolla olevalla SMA-mallilla ja kahdella SES-mallilla on keskimääräinen ikä 5: lle da mutta SES-mallissa painotetaan viimeisimpiä kolmea arvoa kuin SMA-malli, mutta samalla ei unohda yli 9 vanhoja arvoja, kuten tässä kaaviossa on esitetty. Toinen tärkeä etu SES-malli SMA-mallissa on, että SES-malli käyttää tasausparametria, joka on jatkuvasti muuttuva, joten se voidaan helposti optimoida käyttämällä ratkaisija-algoritmia keskimääräisen neliövirheen minimoimiseksi. SES-mallin optimaalinen arvo tämän sarjan osalta ilmaisee On 0 2961, kuten tässä on esitetty. Tämän ennusteen tietojen keskimääräinen ikä on 1 0 2961 3 4 jaksoa, joka on samanlainen kuin 6-kertainen yksinkertainen liikkuva keskiarvo. SES-mallin pitkän aikavälin ennusteet ovat vaakasuora viiva kuten SMA-mallissa ja satunnaiskäytävä malli ilman kasvua Huomaa kuitenkin, että Statgraphicsin laskemat luottamusvälit eroavat nyt kohtuullisen näköisellä tavalla ja että ne ovat huomattavasti kapeampia kuin randin luottamusvälit om-kävelymalli SES-malli olettaa, että sarja on hieman ennakoitavampi kuin satunnaiskäytävä malli. SES-malli on itse asiassa ARIMA-mallin erityistilanne, joten ARIMA-mallien tilastollinen teoria tarjoaa hyvän perustan luottamusvälien laskemiselle SES-malli Erityisesti SES-malli on ARIMA-malli, jossa on yksi epäsuositusero, MA1-termi ja ei vakioaikaa, joka muuten tunnetaan ARIMA 0,1,1 - malliksi ilman vakioa. ARIMA-mallissa MA 1 - kerroin vastaa Esimerkiksi, jos asetat ARIMA 0,1,1 - mallin ilman vakioja täällä analysoituun sarjaan, arvioitu MA 1-kerroin osoittautuu 0 7029, joka on lähes täsmälleen yksi miinus 0 2961. On mahdollista lisätä oletus nollasta riippumattomalle vakioiselle lineaariselle trendille SES-mallille. Tähän voidaan tehdä vain ARIMA-malli, jossa on yksi epäsuositusero ja MA1-termi vakiolla eli ARIMA 0,1,1 - mallilla pitkällä aikavälillä Sitten on trendi, joka vastaa koko arviointikauden aikana havaittua keskimääräistä trendiä Et voi tehdä kausittaista säätöä, koska kausittaiset säätömahdollisuudet ovat pois käytöstä, kun mallityyppi on asetettu ARIMA: lle. Voit kuitenkin lisätä vakion pitkän Terminen eksponentiaalinen trendi yksinkertaiseen eksponentiaalisen tasoitusmallin kanssa kausittaisen säätämisen kanssa tai ilman sitä käyttämällä inflaatiota säätämisvaihtoehtoa ennusteprosessissa Asianmukaista inflaation prosentuaalista kasvuvauhtia jaksoa kohti voidaan arvioida laskennan kertoimeksi lineaarisessa trendimallissa, joka on sovitettu Yhdessä luonnollisen logaritmimuunnoksen kanssa tai se voi perustua muihin pitkäaikaisiin kasvunäkymiin liittyvästä riippumattomasta tiedosta. Palaa sivun alkuun. Brown s Lineaarinen eli kaksinkertainen eksponentiaalinen tasoittaminen. SMA-mallit ja SES-mallit olettavat, että ei ole olemassa suuntausta Kaikenlaisia ​​tietoja, jotka ovat yleensä OK tai ainakin ei-liian-huono 1-askel eteenpäin ennusteet, kun tiedot ovat suhteellisesti noi syy, ja niitä voidaan muokata siten, että ne sisältävät lineaarisen lineaarisen kehityksen, kuten edellä on esitetty. Mitä lyhyen aikavälin trendeihin Jos sarjassa on vaihteleva kasvuvauhti tai syklinen kuvio, joka erottuu selkeästi melusta, ja jos on tarvetta Ennustetaan enemmän kuin 1 jakso eteenpäin, paikallisen trendin estimointi saattaa myös olla kysymys Yksinkertainen eksponentiaalinen tasoitusmalli voidaan yleistää lineaarisen eksponentiaalisen tasoittavan LES-mallin saamiseksi, joka laskee paikalliset arviot sekä tasosta että trendistä. Yksinkertaisin aikamuuttuva suuntaus malli on Brownin lineaarinen eksponentiaalinen tasoitusmalli, jossa käytetään kahta erilaista tasoitettua sarjaa, jotka keskittyvät eri ajankohtiin. Ennusteiden kaava perustuu kahden keskipisteen linjan ekstrapoloimiseen. Tämän mallin Holt s: n hienostunut versio on Seuraavassa selostetaan Brownin lineaarisen eksponentiaalisen tasoitusmallin algebrallinen muoto, kuten yksinkertaisen eksponentiaalisen tasoitusmallin malli, voidaan ilmaista monissa erilaisissa, mutta e Kolmiarvoiset muodot Tämän mallin vakiomuoto on yleensä ilmaistu seuraavasti: Let S tarkoittaa yksinkertaisesti tasoitettua sarjaa, joka saadaan soveltamalla yksinkertaista eksponenttista tasoitusta sarjaan Y, eli S: n arvo ajanjaksolla t on annettu. Muista, että yksinkertaisen eksponentiaalisen tasoituksen alla tämä olisi Y: n ennuste ajanjaksolla t 1 Sitten S merkitsee kaksinkertaisen tasoitetun sarjan, joka saadaan käyttämällä yksinkertaista eksponentiaalista tasoitusta käyttäen samaa sarjaa S. Lopuksi Y: n ennustetta mille tahansa k 1 on annettu. Tämä tuottaa e 1 0 eli huijaa hieman ja anna ensimmäisen ennusteen olevan yhtä todellinen ensimmäinen havainto, ja e 2 Y 2 Y 1, jonka jälkeen ennusteet muodostetaan käyttämällä edellä olevaa yhtälöä, saadaan samat sovitut arvot Kuten S ja S perustuva kaava, jos jälkimmäiset käynnistettiin käyttämällä S 1 S 1 Y 1 Tätä malliversiota käytetään seuraavalla sivulla, joka kuvaa eksponentiaalisen tasauksen yhdistelmää kausittaisella säätöllä. Holt s Linear Exponential Smoothing. Brown S LES - malli laskee paikalliset arviot tasosta ja trendistä tasoittamalla viimeaikaisia ​​tietoja, mutta se, että se tekee niin yhdellä tasoitusparametrilla, rajoittaa tietomalleja, jotka pystyvät sopeutumaan tasoon ja suuntaukseen, eivät saa vaihdella at riippumatonta tasoa Holtin LES-malli käsittelee tätä ongelmaa sisällyttämällä kaksi tasoitusvaketta, yksi tasolle ja yksi trendille Joka kerta t, kuten Brownin mallissa, on paikallisen tason L t ja arvio T t paikallinen trendi Tässä ne lasketaan rekursiivisesti y: n arvosta t havaitussa ajanhetkessä t ja edellisistä tason ja trendin arvioista kahdella yhtälöllä, jotka soveltavat erikseen eksponenttista tasoitusta. Jos arvioitu taso ja trendi ajanhetkellä t-1 Ovat vastaavasti L t 1 ja T t-1, silloin Y t: n ennuste, joka olisi tehty ajanhetkellä t-1, on yhtä kuin L t-1 T t-1 Kun todellinen arvo havaitaan, taso lasketaan rekursiivisesti interpoloimalla Yt: n ja sen ennusteen L t-1 T t-1 välillä käyttäen painotuksia ja 1. Arvioitua tasoa, eli L t Lt 1: n muutosta voidaan tulkita meluisaksi mittaukseksi suuntaus ajankohtana t Trendin päivitetty arvio arvioidaan sitten rekursiivisesti interpoloimalla L: n välillä t L t 1 ja edellisen trendin trendin T t-1 käyttäen painotuksia ja 1. Trenditasoitusvakion tulkinta vastaa tasonsäätövakion tasoa. Pienillä arvoilla olevat mallit olettavat, että trendi muuttuu vain suuremmalla hitaudella, kun taas suurempien mallien oletetaan muuttuvan nopeammin. Suuri malli uskoo, että kaukana oleva tulevaisuus on hyvin epävarma, koska trendien arvioinnin virheet tulevat melko tärkeiksi, kun ennustetaan enemmän kuin yksi aika edellä. Palaa alkuun Sivutaso tasoittaa ja voidaan arvioida tavallisella tavalla minimoimalla yhden askeleen ennusteiden keskimääräinen neliövirhe. Kun Statgraphicsissa tämä tehdään, arviot osoittavat olevan 0 3048 ja 0 008. tarkoittaa, että mallissa oletetaan, että trendi vaihtelee hyvin vähän ajanjaksosta toiseen, joten pohjimmiltaan tämä malli yrittää arvioida pitkän aikavälin suuntausta. Vastaavasti käsitteellä "keski-ikä" se paikallisen tason sarja, keskimääräinen ikä, jota käytetään paikallisen trendin arvioinnissa, on verrannollinen 1: een, vaikka se ei ole täsmälleen sama. Tässä tapauksessa se osoittautuu 1 0 006 125 Tämä isn ta erittäin tarkka luku koska tarkkuuden tarkkuus ei ole todellakaan 3 desimaalin tarkkuudella, mutta se on samaa yleistä suuruusluokkaa kuin näytteen koko 100, joten tämä malli on keskimäärin melko paljon historiaa trendin arvioimiseksi. Alla oleva taulukko osoittaa, että LES-malli arvioi jonkin verran suurempaa paikallista suuntausta sarjan lopussa kuin SES-trendimallissa arvioitu jatkuva kehitys. Myös arvioitu arvo on lähes identtinen SES-mallin kanssa sovittamalla tai ilman suuntausta , Joten tämä on melkein sama malli. Nyt nämä näyttävät kohtuullisilta ennusteiksi mallille, jonka pitäisi arvioida paikallista trendiä. Jos näet silmämunin tämän tontin, näyttää siltä, ​​että paikallinen trendi on kääntynyt alaspäin lopussa sarja Wh at on tapahtunut Tämän mallin parametreja on arvioitu minimoimalla 1-askeleen ennusteiden neliövirhe, ei pidemmän aikavälin ennusteita, jolloin trendi ei tee paljon eroa Jos kaikki olet tarkastelemassa ovat 1 - etenemisvirheitä, et näe suurempaa kuvaa suuntauksista yli sanoa 10 tai 20 jaksoa Jotta tämä malli olisi paremmin sopusoinnussa tietojen silmämunien ekstrapolointiin, voimme säätää manuaalisesti trendin tasoitusvakion niin, että se käyttää trendin estimointiin lyhyemmän perustan Esimerkiksi jos päätämme asettaa 0 1, paikallisen trendin arvioinnissa käytettävien tietojen keskimääräinen ikä on 10 jaksoa, mikä tarkoittaa, että lasketaan keskiarvo viimeisen 20 jakson aikana tai niin Tässä on se, mitä ennustettu tontti näyttää, jos asetamme 0 1 säilyttäen 0 3 Tämä näyttää intuitiivisesti kohtuulliselta tässä sarjassa, vaikkakin on todennäköisesti vaarallista ekstrapoloida tämä trendi yli 10 jaksoa tulevaisuudessa. Mitä virhestatuksista tässä on mallivertailu f Tai edellä kuvatut kaksi mallia sekä kolme SES-mallia SES-mallin optimaalinen arvo on noin 0 3, mutta vastaavilla tuloksilla, joilla on hieman enemmän tai vähemmän vastetta, saadaan vastaavasti 0 5 ja 0 2. A Holt s lineaarinen exp tasoitus alfa 0 3048 ja beeta 0 008. B Holtin lineaarinen pikselointi alfa 0 3: lla ja beeta 0 1. C Yksinkertainen eksponenttinen tasaus alfa 0 5. D Yksinkertainen eksponentiaalinen tasoitus alfa 0 3. E Yksinkertainen eksponenttinen tasaus alfa 0 2: lla. Kaikki tilastot ovat lähes samanlaisia, joten emme todellakaan pysty tekemään valintaa yhden askeleen ennakkoilmoitusvirheiden perusteella. Meidän on pudottava muut näkökohdat. Jos uskomme vahvasti, että on järkevää perustaa nykyinen trenditieto siitä, mitä on tapahtunut viimeisen 20 ajanjakson aikana tai niin, voimme tehdä tapauksen LES-mallille, jossa on 0 3 ja 0 1 Jos haluamme olla agnostisia siitä, onko paikallinen suuntaus, niin yksi SES-malleista voisi olisi helpompi selittää ja antaa myös enemmän middl e-of-the-road - ennusteet seuraaville viideksi tai kymmenelle jaksolle Palaa sivun yläreunaan. Mikä suuntaus-ekstrapolointi on paras horisontaalinen vai lineaarinen? Empiirinen näyttö viittaa siihen, että jos tietoja on jo jo tarpeellista inflaatiota varten, niin voi olla varomaton ekstrapoloida lyhytaikaisia ​​lineaarisia suuntauksia hyvin pitkälle tulevaisuuteen. Tänään näkyvät trendit voivat hidastua tulevaisuudessa erilaisten syiden vuoksi, kuten tuotteiden vanhentumisesta, lisääntyneestä kilpailusta ja teollisuuden syklisistä laskusuhdanteista tai nousuista. Tästä syystä yksinkertainen eksponentiaalinen tasoitustoimet tekevät usein parempaa näytteenottotapahtumaa kuin muutoin olisi odotettavissa, vaikka sen naiivi horisontaalinen suuntaus ekstrapolaatiosta Lineaarisen eksponentiaalisen tasoitusmallin vaimennetut trendimuutokset ovat myös käytännössä usein käytännössä esillä konservatiivisuuden muistiinpanossa sen suuntausennusteisiin. Vaimennettu trendi LES-malli voidaan toteuttaa erityisenä esimerkkinä ARIMA-mallista, erityisesti ARIMA 1,1,2-mallista. On mahdollista laskea luottamusvälit arou eksponentiaalisten tasoitusmallien tuottamat pitkän aikavälin ennusteet, tarkastelemalla niitä ARIMA-mallien erikoistapauksina Varo, etteivät kaikki ohjelmat laske luottamusvälit näille malleille oikein Luottamusvälien leveys riippuu mallin RMS-virheestä, tyypistä Yksinkertaisen tai lineaarisen tasoituksen taso iii tasoitusvakion s ja iv lukema ennusteiden aikaisempien jaksojen lukumäärä Yleensä välejä levitetään nopeammin, kun ne ovat suurempia SES-mallissa ja ne levittyvät paljon nopeammin, kun ne ovat lineaarisia eikä yksinkertaisia tasoitus on käytetty Tätä aihetta käsitellään edelleen huomautusten ARIMA-malleissa. Palaa sivun alkuun. Keskimääräisen ennusteen siirtäminen. Johdanto Kuten arvelette, tarkastelemme joitakin ennennäkemättömiä ennusteita. Toivottavasti nämä ovat ainakin kannattaa ottaa käyttöön joitain laskentataulukoiden ennusteiden käyttöönottoon liittyviä laskentakysymyksiä. Esimerkkinä jatkamme aloittamalla alusta ning ja aloittaa työskentelyn Moving Average forecasts. Moving keskimääräiset ennusteet Jokainen on perehtynyt liikkuvia keskimääräisiä ennusteita riippumatta siitä, uskovatko he ovat Kaikki opiskelijat opiskelevat niitä koko ajan Ajattele testituloksia kurssi, jossa sinulla on neljä testit lukukauden aikana Oletetaan, että olet saanut ensimmäisen testin 85. Mitä arvioisit toisen testipisteen suhteen. Mitä mieltä olet opettajasi seuraavan testipisteenne. Mitä mieltä olet ystäväsi seuraavista testitulokset. Mitä luulet vanhempiesi näkevän seuraavan testipisteenne suhteen. Riippumatta kaikista ystävistä ja vanhemmistasi tekemistäsi blabbereista, he ja opettajasi todennäköisesti odottavat, että saat jotain 85: n Olet vain saanut. Vaikka, nyt oletetaan, että huolimatta oman edistämisen ystävillesi, voit yliarvioida itseäsi ja luku voit opiskella vähemmän toisen testin ja niin saat 73. Nyt mitä ovat kaikki conc erned ja unconerned menossa ennakoida saat kolmannen testin On olemassa kaksi todennäköisesti lähestymistapoja heille kehittää arvio riippumatta siitä, jakavatko ne kanssasi. He voivat sanoa itselleen, Tämä kaveri on aina puhaltaa savua hänen älykkyytensä Hän aikoo saada toisen 73, jos hän on onnekas. Ehkä vanhemmat yrittävät olla tukevampia ja sanoa, No niin, sinä olet saanut 85: n ja 73: n, joten ehkä sinun pitäisi ymmärtää 85 73 2 79 En tiedä, ehkä jos teet vähemmän juhlimista ja ettet vaivannut pikkulintua koko paikan päällä ja jos lähdit tekemään paljon enemmän opiskeluja, saatat saada korkeamman pistemäärän. Useimmat näistä arvioista ovat itse asiassa keskimääräisiä ennusteita. Ensimmäinen on Käyttämällä vain viimeisintä pistettä ennustaa tulevaa suorituskykyä Tätä kutsutaan liukuva keskimääräinen ennuste yhden ajanjakson. Toinen on myös liukuva keskimääräinen ennuste, mutta käyttäen kahta dataa. Oletetaan, että kaikki nämä ihmiset rikkoivat sinun suuri mieli on lajiteltu f pissed sinut ja päättäisit tehdä hyvin kolmannella testillä omasta syystä ja laittaa korkeamman pistemäärän liittolaistensa edessä Otat testi ja pisteesi on oikeastaan ​​89 Jokainen, mukaan lukien itsesi, on vaikuttunut. Joten nyt sinulla on viimeinen puolivälin testi, joka tulee tavalliseen tapaan ja tunnet tarvetta yllyttää kaikki tekemään ennustuksen siitä, miten teet viimeisen testin aikana. No, toivottavasti näet kuvion. Nyt, toivottavasti näet kuvion. Uskotteko, että se on kaikkein tarkin. Whistle, kun työskentelemme Nyt palaamme uuteen siivousyritykseen, jonka aloitti puolustusvoimasi nimeltä Whistle While We Work Sinulla on joitain aiempia myyntitilastoja, joita edustaa seuraava osio laskentataulukosta Esitämme ensin tiedot Kolmen jaksoisen liukuvan keskimääräisen ennusteen. Solun C6 merkinnän pitäisi olla. Nyt voit kopioida tämän soluosan kahteen muuhun soluun C7: stä C11: een. Huomaa, kuinka keskiarvo siirtyy viimeisimmistä historiallisista tiedoista, mutta käyttää täsmälleen kolmea Viimeisimmät jaksot, jotka ovat käytettävissä jokaisen ennusteen osalta Huomaa myös, että emme todellakaan tarvitse tehdä ennusteita aikaisemmille kausille, jotta voimme kehittää viimeisimmän ennustamme. Tämä on ehdottomasti erilainen kuin eksponentiaalinen tasoitusmalli, johon olen sisällyttänyt aiemmat ennusteet, koska Käyttää niitä seuraavalla verkkosivulla mittaamaan ennusteiden validiteetti. Nyt haluan esittää samankaltaiset tulokset kahteen jaksoon liukuvalle keskimääräiselle ennustukselle. Solun C5 merkinnän pitäisi olla. Nyt voit kopioida tämän soluosan kahteen muuhun soluun C6 C11: n kautta. Huomaa, kuinka kullekin ennusteelle käytetään vain kahta viimeistä historiallista tietoa. Jälleen olen sisällyttänyt aikaisemmat ennusteet havainnollistamistarkoituksiin ja myöhempää käyttöä varten ennusteiden validoinnissa. Myös muita asioita, jotka ovat tärkeitä huomautukselle. M-ajan liikkuva keskiarvo ennustaa ennusteiden tekemiseksi vain viimeisimmät m arvot. Ennustetta tekemiseen mitään muuta ei tarvita. Huomaa, että ensimmäinen ennuste tapahtuu ajanjaksolla m 1. Näistä ongelmista tulee olemaan hyvin merkittäviä, kun kehitämme koodimme. Liikkuvan keskiarvotoiminnon kehittäminen Nyt meidän on kehitettävä liikkuvaa keskimääräistä ennusteita, joita voidaan käyttää joustavammin Koodi seuraa Huomaa, että panokset ovat niiden aikojen lukumäärää, joita haluat käyttää ennusteessa ja historiallisten arvojen joukossa. Voit tallentaa sen haluamaasi työkirjaan. Function MovingAverage Historiallinen, NumberOfPeriods Single Declaring ja alustuksen muuttujat Dim Item As Variant Dim Counter kuin kokonaisluku Dim kokoamisessa kuin Single Dim HistoricalSize kuin kokonaisluku. Muuttujien alustaminen Counter 1: n kertyminen 0. Historical array HistoricalSize. for: n määrittäminen Counter 1: lle NumberOfPeriods: lle. Keräämällä sopiva määrä viimeisimpiä aiemmin havaittuja arvoja. Kerääntymisen kertyminen Historiallinen HistoricalSize - NumberOfPeriods Counter. MovingMaksujen keskimääräinen kertymänumero. Peruutukset. Koodi selitetään luokassa Haluat sijoittaa toiminnon laskentataulukkoon niin, että laskutoimitus näkyy missä se pitäisi Kuten seuraavassa.

Comments

Popular posts from this blog

Forex Voittoa Laskin With Vipuvaikutus

Inwestowanie Na Forex